There is No One True Best Programming Language (but some are still better than others)

I am no stranger to programming language controversy. I have a whole category on my blog dedicated to explaining why Rust is better than C++, and I’ve taken the extra step of organizing it into an MDBook for everyone’s convenience. Most of them have been argued about on Reddit, and a few even on Hacker News. Every single one of them have been subject to critique, and in the process, I’ve been exposed to every corner, every trope and tone and approach of programming language debate religious war, from the polite and well-considered to the tiresome and repetitive all the way to the rude and non-sensical.

A New Garden: Rust vs C++ mdbook

Here it is, the Rust vs C++ mdbook. I’ve wanted for a while to re-organize some of the content on my blog into gardens. I got the idea from the blog post “The Garden and the Stream: A Technopastoral”. Basically, some content is ill-suited to date-based, time-organized systems like blogs. In fact, most of my content remains valid over a long period of time, rather than participating in conversation (with some exceptions), but rapidly becomes less discoverable after I’ve written it, as it is buried by newer posts.

Rust: A New Attempt at C++’s Main Goal

I know I set the goal for myself of doing less polemics and more education, but here I return for another Rust vs C++ post. I did say I doubted I would be able to get fully away from polemics, however, and I genuinely think this post will help contextualize the general Rust vs. C++ debate and contribute to the conversation. Besides, most of the outlining and thinking for this post – which is the majority of the work of writing – was already done when I set that goal.

My Reaction to Dr. Stroustrup’s Recent Memory Safety Comments

The NSA recently published a Cybersecurity Information Sheet about the importance of memory safety, where they recommended moving from memory-unsafe programming languages (like C and C++) to memory-safe ones (like Rust). Dr. Bjarne Stroustrup, the original creator of C++, has made some waves with his response. To be honest, I was disappointed. As a current die-hard Rustacean and former die-hard C++ programmer, I have thought (and blogged) quite a bit about the topic of Rust vs C++.

RAII: Compile-Time Memory Management in C++ and Rust

I don’t want you to think of me as a hater of C++. In spite of the fact that I’ve been writing a Rust vs C++ blog series in Rust’s favor (in which this post is the latest installment), I am very aware that Rust as it exists would never have been possible without C++. Like all new technology and science, Rust stands on the shoulders of giants, and many of those giants contributed to C++.

Can you have too many programming language features?

There’s more than one way to do it. Perl motto There should be one– and preferably only one –obvious way to do it. The Zen of Python (inconsistent formatting is part of the quote) When it comes to statically-typed systems programming languages, C++ is the Perl, and Rust is the Python. In this post, the next installment of my Rust vs C++ series, I will attempt to explain why C++’s feature-set is problematic, and explain how Rust does better.

A Rust Gem: The Rust Map API

For my next entry in my series comparing Rust to C++, I will be discussing a specific data structure API: the Rust map API. Maps are often one of the more awkward parts of a collections library, and the Rust map API is top-notch, especially its entry API – I literally squealed when I first learned about entries. And as we shall discuss, this isn’t just because Rust made better choices than other standard libraries when designing the maps API.

Being Fair about Memory Safety and Performance

For this next iteration in my series comparing Rust to C++, I want to talk about something I’ve been avoiding so far: memory safety. I’ve been avoiding this topic so far because I think it is the most discussed difference between C++ and Rust, and therefore I felt I’d have relatively little to add to the conversation. I’ve also been avoiding it because I wanted to draw attention to all the other little ways in which Rust is a better-designed programming language, to say that even if you concede to the C++ people that Rust isn’t “truly memory safe” or “memory safe enough,” Rust still wins.

C++ Move Semantics Considered Harmful (Rust is better)

This post is part of my series comparing C++ to Rust, which I introduced with a discussion of C++ and Rust syntax. In this post, I discuss move semantics. This post is framed around the way moves are implemented in C++, and the fundamental problem with that implementation, With that context, I shall then explain how Rust implements the same feature. I know that move semantics in Rust are often confusing to new Rustaceans – though not as confusing as move semantics in C++ – and I think an exploration of how move semantics work in C++ can be helpful in understanding why Rust is designed the way it is, and why Rust is a better alternative to C++.

Sayonara, C++, and hello to Rust!

This past May, I started a new job working in Rust. I was somewhat skeptical of Rust for a while, but it turns out, it really is all it’s cracked up to be. As a long-time C++ programmer, and C++ instructor, I am convinced that Rust is better than C++ in all of C++’s application space, that for any new programming project where C++ would make sense as the programming language, Rust would make more sense.